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INTEGRAL EQUATIONS FOR 
INHOMOGENEOUS MAGNETOPLASMA WAVES 

Paul Diament 

Institute for Plasma Research 
Stanford University 
Stanford, California 

ABSTRACT 

The problem of wave dispersion and stability for a class of hot, 

Inhomogeneous, collisionless magnetoplasmas is reduced to the solution 

of an integral equation with well-behaved kernel.  Admissible config- 

urations include those for which the externally applied and internal 

ambipolar fields form a generalized harmonic oscillator.  The full sot 

of Maxwell's equations is used to arrive at self-consistent pertur- 

bation fields in terms of the equilibrium particle distributions.  An 

illustrative example treats a magnetoplasma column with Gaussian 

radial profile and Maxwellian velocity distribution in a state of quasi- 

equilibrlum. 

*0n leave from the Department of Electrical Engineering, Columbia 

University, New York, 1966-67. 
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I.  INTRODUCTION 

The propagation and evolution of small disturbances In a hot, 

n.agnetizcd, Inhomogencous plasma Is a matter of considerable theoret- 

ical and practical Interest with regard to both the wave supporting 

capabilities of the medium and Its stability against small perturbations. 

Although the procedure leading to descriptions and predictions of the 

response of the plasma to small signals can be formulated quite explic- 

itly, the problem has long resisted definitive analysis, by virtue of 

what appears to be an intrinsic incompatibility with the ideal conditions 

under which standard analyses and perturbation techniques are effective. 

The major complicating features are the nonllnearity of the system 

dynamics and the inhomogeneity of the medium, which makes the system 

sensitive, via particle transport, to global as well as local conditions. 

The general analysis procedure can be decomposed into a number of 

distinct subproblems, each of which isolates a particular feature of 

the system, such as inhomogeneity, nonllnearity, anisotropy, statistical 

distribution, electromagnetic interaction.  These may be dealt with 

individually at first, then combined in a self-consistent manner.  The 

concatenation of the subproblems links the tractability of one quite 

strongly to that of the preceding one, with the result that the 

complexity of the mathematical description forces recourse to numerical 

analysis at a very early stage of the calculation.  It soon becomes 

hopeless to direct and interpret a realistic computation meaningfully. 

It is the purpose of this paper to present an approach to the problem 

which can be pushed analytically nearly to completion, leaving to 

digital computers only some relatively straightforward quadratures. 

The system dealt with is, in the general formulation, a collection 

of charged particles of two species, inhomogencous].y distributed in 

space, with arbitrary velocity distributions, Immersed in a uniform 

and constant applied magnetic field, in the absence of collisions. 

The evolution of arbitrary weak disturbances of an equilibrium state 

is sought, for the determination of stability and wave dispersion.  The 



problem ir three-dimensional and is treated nonrelatlvistically. but 

with the fulx set of Maxwell's equation, and retaining the r.f. magnetic 

field interaction.  A particular class of plasma configurations is 

considered, whose realizability is discussed and justified on physical 

grounds. 

Experiments on inhomogeneous magnetoplasmas were reported and 

interpreted by Buchsbaum and Hasegawa!1'^  They obtained a fourth- 

order differential equation for the potential, without accounting for 

the ambipolar fields.  Pearson(3'4) extended their treatment by allowing 

for anisotropic velocity distributions and ambipolar fields.  Baldwin(5) 

considers wave propagation in inhomogeneous magnetoplasmas in the low 

temperature limit, with no resonant particle effects.  Analyses such 

as these inherently lack generality, being based on various approxi- 

mations which effectively remove the nonlocal nature of the interactions, 

or require low temperature or only slight inhomogeneity, or rely on 

quasistatic conditions.  They can be quite successful in interpreting 

experiments that conform to the specialized assumed conditions, although 

the results may often be valid in only highly restricted ranges of the 

parameters, such as near the second cyclotron harmonic.  Due recognition 

of nonlocal interactions was given by Buneman(6)in his analysis of the 

Bennett pinch.  This leads to an integral equation, rather than differ- 

ential equations, but one of a rather intractable character, due to the 

complexity of the particle orbits and to the effects of particle motions 

in resonance with the disturbances.  The present work deals with a class 

of systems describable by tractable integral equations. 

■—-,  .  



II.  OUTLINE OF METHOD 

Starting with a specified particle distribution function to(x,v)   , 

for each species, at time t = 0  , the problem may be stated as that 

of determining its subsequent time development,  f^x,v,t)  , since this 

function provides statistical information as to the state of the system. 

The particles so described are subjected to forces due to the applied 

magnetic field, the space charge forces of the ambipolar electric field, 

the self magnetic field due to unbalanced currents, and to small-signal 

electromagnetic fields accompanying a-weak disturbance, either applied 

externally or self-generated.  Collisions are excluded from consideration 

in this paper. 

The evolution of the initial distribution function is implicit in 

the Boltzmann equation, which states that the density in phase space 

remains constant along the particle trajectories, in the absence of 

collisions.  Regardless of how the equation is formulated. Its solution 

entails the determination of the particle orbits, under the action of 

all the forces.  The distribution at time t  is determined by evaluating 

the Initial one at that point in phase space,  (x ,v )  , where a 

particle arriving at x with velocity v at time  t originated at 

t = 0    Since the forces other than the applied ones are themselves 

determined from sources obtained by suitable averaging over the distri- 

bution, the overall problem is nonlinear.  This stage of the analysis 

is hence to be carried out implicitly to obtain expressions for the 

particle orbits, particularly the initial phase points, as functionals 

of unknown force fields, to be found subsequently from the functional 

form of the distribution.  Clearly, it is essential to arrive at a 

fairly explicit form of the particle trajectories in order to permit 

the requisite processing of the distribution function to extract the 

unknown fle^s consistently. 

Two Intermediate steps are involved before the closing of the set 

of equations through the extraction of self-consistent fields. First, 

the distribution f(x,v,t)  , as yet found only implicitly in terms of 
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unknown force llulds, is to be suitably weighted and averaged to obtain 

ill«' electric charge and current distributions, still In terms of the 

fleetromagnetlc fields of which they are the sources.  This step 

represents the determination of the constitutive parameters of the 

medium.  The next step Is the solution of Maxwell's equations, with 

these charges and currents as sources, to obtain the fields which exert 

the originally assumed forces.  The condition of self-consistency then 

expresses the dispersion relation for the medium, Including the stability 

ol the unperturbed state. 

The anisotropy of the magnctoplasma results In the tensor character 

ol the constltullve parameters, so that the entire analysis Is best 

dealt with by matrix calculus.  This minor complication Is overshadowed 

by the further one that. In the Inhomogencous medium, the constitutive 

parameters are not expressible simply as permittivity or conductivity 

tensors but, more generally, as Integral operators expressing the non- 

local nature of the medium's sensitivity to disturbances.  This Is a 

direct result of the transport of particles along orbits that span 

regions of varying properties, with different responses to perturbations. 

This global sensitivity ultimately leads to an integral equation for 

the self-consistent fields. 

It is clear then that for this program not to be frustrated from 

the start, it is essential that the particle transport be expressible 

analytically, and in relatively simple form, rather than merely 

numerically.  This is virtually impossible to achieve in a completely 

self-consistent manner, however, for the particle trajectories are 

generally highly complicated solutions to nonlinear differential 

equations.  In particular, the orbits in the inhomogeneous magnetoplasma 

are not simply helical, because of the action of the ambipolar electric 

field.  Thus, the description of even the equilibrium state is a 

dlfricult task in fully realistic situations. 

The key to the analysis to follow is the construction of a plasma 

configuration which is characterized by simply expressed unperturbed 

particle orbits.  The class of orbits to be admitted includes those 
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which solve genorallzod harmonic oscillator equations.  Although the 

associated configurations are round In the general Inhomogcneous, two- 

species case not to be strictly self-consistent and time-Invariant, it 

will be shown that, by proper choice of the parameters, the initial 

state can be made to persist for relatively long periods of time, If 

not indefinitely.  The effects which ultimately unravel the quasi- 

equilibrium unperturbed state can be made second order and act on a 

relatively long lime scale.  Since the restriction to collision-free 

systems has already limited the time duration of validity of the 

analysis, there is no inconsistency in investigating the short-term 

stability of a slowly varying unperturbed state. 

Even with simple analytic expressions for the particle orbits, the 

standard approach based on the distribution function would lead 

ultimately to an integral e.iuutlon whose kernel exhibits certain 

singularities.  These arc associated with particles whose orbits are 

in reson.incc with the propagating disturbances and are essential to the 

stability problem in that they lead to collisionless damping or growth 

phenomena.  The standard procedure for dealing with the singularities, 
(7) 

as formulated by Landau,    involves complex contour integrations that 

arc inimical to convenient numerical analysis. 

To avoid the appearance of singular kernels, the method to be used 

describes the system in terms of its "inverse phase space spectrum," 

i.e. through the Fourier transform of the particle distribution function. 

This has a number of additional advantages, in that it is an algebrai- 

cally simpler description which virtually eliminates the two intermediate 

steps of the program outlined above.  The extraction of the sources of 

tne perturbation flilds involves simply evaluation or differentiation 

of the spectrum, rather than integration of the distribution over 

velocity.  In addition, the transform formulation makes the solution 

of Maxwell's equations merely a matter of algebraic manipulation.  As 

a result, the procedure can be carried forth analytically to a final 

integral equation with nonsingular kernel, which nay be solved 

numerically in a straightforward manner. 



As an Illustration of the method, the Integral equation expressing 

the dispersion relation of the medium Is obtained for a plasma with a 

Maxwulltan distribution In velocity and a Gaussian distribution In 

space. 
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III.  EVOLUTION OF INITIAL STATE 

For rompactnts» of notation in the Initial manipulations, phase 

space will be considered as that spanned by the six-vector 0  , 

comprised of the t»o position vectors In configuration and velocity 

space,  x,v  .  The first task Is the determination of the particle 

distribution function f(0,t)  , given the Initial one,  f(0,O) = fo(0) 

In the absence of collisions, the Boltrmann equation prescribes 

that 

f(0,t) d60 = fo(0o) d
60o , (1) 

where 0  i« the Initial phase p^lnt of a particle whose phase point 

is 0 at time t  . This expresses particle conservation, or continuity 

in phase space along the particle tr ijectorles. 

Consider any system for which the rtro-order orbit equation Is 

linear In the phase; I.e. has 'he form of a generalized harmonic oscil- 

laior equation: 

d0/dt = Y 0(t)  . t2) 

it is asfumod here fiat the 6 x 6 matrix Y Is constant, dotormined 

by both the externally applied force field and the Internal space charge 

field, associated with the Inhomogeneous distribution.  It will be 

shown later that this assumption Is exact for a homogeneous magneto- 

plasma and very nearly exact for an I homogeneous one. 

Under the action of the perturbation, the orbit equation Includes 

an anharmonlc term, due to the additional acceleration bu.lt Into the 

six-vector afl<0,t)  . The trajectory Is then specified by the 
6 
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dynamic equation, 

d0(\)/d\ = Y 0(X) + ac(0(\),\),     0(t) « 0 , (3) 

In which the "initial" condition directs the orbit to the phase point 

t time t  .  What Is required In (1) Is the inlti 

An equivalent Integral equation for the orbit Is 

(ft    at time t  .  What Is required In (1) Is the Initial phase 0 = 0(0) 

'    —. v f i" — ä   % 

(4) 
..v.  -Y(t-X)^ f   -y(T-\) ,.... . . 
0(X) = e v  '0 - I e v   a6(0(T),T) dT  , 

and the Initial phase is given in  terms of Its solution 0(X)  by 

0o = e"
Yt 0 - f    e"YTa6(0(T)i;T) a; (5) 

'o 

Specializing these exact, general equations to the case of weak 

perturbations of the harmonic orbits, the Initial phase 0=0 (0,t) 

is given to first order in the perturbation a_(0,t)  by 

0 - f   e      a6(e"
YX0,t-X) dX 0o = e"

Yt|0 ~  |  e  a^Ce^'^.t-X) dX| . (6) 

The assumption of a harmonic system has led to a simple, explicit 

expression for the initial phase point of the perturbed orbits for any 

weak disturbance. 

To complete the determination of the time development of the 

initial distribution, there remains to relate the initial and final 

elements of phase space,  d 0  and d 0  .  The relation is gli'en by 
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the Jacobian of the transformation: 

d60 = |det 90 /a0| d60  . (7) 

But the acceleration affecting the particles is quite generally solenoidal 

in velocity, with the consequence that the force fields are such that 

Tr Y = 0 and (0/90)-a (0,t) =0  , at least in the absence of colli- 

sions.  As a result, (6) leads, at least to first order, to 
ß      6 

det (90/90) =1  , so that d 0 = d 0 .  The eJement of phase space 

is invariant. 

The time development of the initial distributior is thus expressed 

to first order in the perturbation by 

f(0,t) = fo(e"
Yt[0 - ^ eYXa6(e"

YX0,t-X) d\|^  .      (8) 

Assuming further that the initial distribution is an equilibrium 

one in the unperturbed system adds the condition that, with a6 = 
0  » 

-Yt f(0,t) = f (e  0)  must be independent of t  ; i.e.. 

f (o'Yt0) = f (0)  . O) 
o o 

Since this Is a condition on the functional form of the initial 

distribution and holds for all 0 , (8) is thereby simplified to 

f(0,t) = fo[0 - f    eYXa6(e"
YX0,t-X) d\j  . (10) 



This explicit expression for the time development of an equilibrium 

distribution under a perturbation a (0,t)  states that the distribution 

at phase 0 at time t  Is given to first order by evaluating the 

equilibrium distribution f (0)  at the sllghtlv displaced phase 0-0 , 

where 

0    - 0,(0,t) = f   eYXa6(e"
YVt-X) <». (11) 

'o 

accumulates the perturbations suffered along the trajectory, 
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IV.  INVERSE PHASE SPACE SPECTRA 

Rather than proceeding to extract the velocity moments of the 

distribution function by integration of (10) to obtain the electro- 

magnetic sources, the entire system description will be relegated to 

inverse phase space.  This facilitates the extraction of velocity 

moments, and thence the electromagnetic fields, and averts the appear- 

ance of singularities corresponding to resonant particles. 

Inverse phase space is spanned by the six-vector 8  , composed of 

the wave vector Jk and the inverse velocity vector A  .  The inverse 

phase space spectrum of the distribution is Just its six-dimensional 

Fourier transform: 

F(e .t) =y*f(0,t) el8'*d% . (12) 

The spectral description is algebraically simpler, replaces convolutions 

by products and drifts by phase factors, and yields the velocity moments 

of the distribution by merely evaluating the spectrum and its derivatives 
(8) 

at the origin in inverse velocity space.   The distribution function 

description is best dispensed with entirely; the initial state of the 

system is to be specified directly in inverse phase space, by F (9) 
o 

The evolution of the spectrum follows from that of the distribution 

function.  Since 

f(0,t) = f (0 - 0 ) = /F (0 ) e  0        dbe /(2,t) 
o        J   o    o o' ,   (13) 
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expansion to first order In 0      and Fourier transformation yields for 

the perturbed spectrum 

F(e,t) = Fo(e) + */»0<W
,,(t"io,t) d6eo/(2n)

6 ,   (i4) 

where 8 (9,t)  Is the Fourier transform of 0 (^,t)    From (11), 

this Is given by 

e^e.t) = f    eY>7l6(e"
YX0,t-X) e19* d6^ dX  ,      (15) 

which indicates that the relevant perturbation quantity Is the acceleration 

In inverse phase space,  Afi(9,t)  , the Fourier 1 

Since d 0 = d (e" 0)  , (15) Is expressible as 

In inverse phase space,  A (9,t)  , the Fourier transform of ae
f0,t) 

.6.   .6, -Y\ 

e'(e,t) = f   eYXA (9 eYX, t - X) dX (16) 
•'o 

6      6    YX 
and a similar change of variable, using d 8 =d(9e )  and the 

00 Yt 
fact that the equilibrium condition, (9), translates into F (9) = F (9e ), 

o     o 
converts (14) into 

F1t9,t)  = i   f   [F (9,-9 )(9,-9 )-A-(9   ,t-X)d69 dX/(2«)6     .     (17) 1 JJoXoKooo o 

12 



Here,  F (9,t)  is the perturbntlon of the spectrum ond 

et  = 6 eYt (18) 

mny be viewed as tht orbit in inverse phase space. 

With the perturbation of the spectrum now expressed as a convolution 

in time, a final Laplace transformation is indicated, which will also 

reduce Maxwell's equations to algebraic ones.  Denoting the Laplace 

trnnsform operation by G(s) = L g(t)  , the convolution theorem yields 

for the transformed spectrum perturbation, 

p^e.s) = IL fr (e-e )(9-e )-A_(9 .s)d6e /(2rt)6   . (19) 
1       ~*y ototooo     o* 

This relation specifies the operations to be carried out on the equilib- 

rium spectrum F (6)  to obtain the system response to the perturbation. 

Fig. 1 traces the methods of calculating the response of the system 

to the perturbing fields, In the phase-time, inverse phase-time, and 

inverse phase-frequency domains. 
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V.  SELF-OONSISTENT FIELDS 

The acceleration associated with a perturbation consists of any 

weak externally applied field, such as an impulse or a signal wave, 

together with the reaction provided by the internal electromagnetic 

In particular, the plasma fields: A6(e,s) = A6
ext(e,s) + A6

em(e,s) 

response to a weak impulse which imparts velocity v  uniformly to the 

particles is obtainable by setting 

a6(0,t) = 
0 

v 
L PJ 

6(t) A6(e,s) = [«> )66(e) (20) 

so that, from (19) and the equilibrium condition, 

F1(e,s) = iLs F (0 e
Yt) 0 eYt [y+ ^<e' s) 

iFo(9) e.(s v.- [:j+ vv. 

There remains to obtain the electromagnetic interaction. 

Three steps are involved in expressing the internally generated 

perturbation F1  (e,s)  in terms of the total perturbation F (9,8) 

By virtue of the present transform formulation, each of these has been 

reduced to algebraic manipulation.  The first step is the extraction 

of the field sources from the perturbed spectrum; Maxwell's equations 

then yield the r.f. electromagnetic fields generated by these sources. 

Finally, the internally generated acceleration is expressed in terms 

of the perturbation through the Lorentz force.  This closes the equatior 

self-consistently. 

14 



If the system includes N particles of mass m and charge (-e) 

distributed in phase space as f(0,t)  , then with the normalization 

F (0) = 1  , the perturbation charge and current densities contributed 

by that species are given by their Fourier-Laplace transforms as 

p^k.s) = -e N F^k.O.s) , J/k.s) = ie N 5 F^k.O.s)^  . (22) 

Note that particle conservation is expressed by 

k  öF.U.O.s) 
- • -JL^  . Ffk.O.s)  . (23) 
s      äA      1 ~ 

Maxwell's equations combine into a wave equation, which transforms 

to 

c2 k x (k x a) = s2 a - (e/me ) ■ Mk.s) ,       (24) 

where a(k,s) = (-e/m) E(k,s)  is the transform of the acceleration 

suffered by a particle subjected to only the r.f. electric field, and 

J (k,s)  is the total current density due to all the species. Continuing 

^o consider only the contribution of the one species, (24) may be 

expressed in terms of the perturbed spectrum by 

c2(k k - kVa = s2a - l^2 s OF (k,0,8)/aA  , (25) 

where >*  = Ne2/me  is the product of the average squared plasma 

frequency and the volume containing the N particles. Togrther with 
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(23), this equation Incorporates Gauss' law, 

k-a = Uü   F(k,0,B)     , ~ ~     o 1 -^ (26) 

so that the solution of the wave equation Is 

a(k,s) = ^o   / 2       ö \ 
s)  . (27) 

By Faraday's law, the transform of the acceleration due to the r.f. 

magnetic field interaction is ^v X (ik X a) , so that the total Lorentz 

acceleration is given in inverse phase space by 

A (k,A,s) = (2,0" a 6(A) +(^a - a-j-ö^A) (28) 

It should be remarked that this formulation neglects relativistic 

corrections of order (v/c)  but retains all terms of order (v/c) 

Introducing Ac(k ,A ,s)  into (19) and integrating over A 
o ~o ~o /^O 

leaves, after some manipulations, 

F^e.s) ^/[^At^t X<VB)] •Ä<i5o's)dV(2't)3   '   (29) 

where 

Vt        vt 
e+ = (k ,A.) = Be" = (k,A)e" ; F+ = F (k -k .A,.) 
t       ~t '^t K*'*S* '    t        O ~t ^KJ ~t 

(30) 
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and 

* (k'A)        .  , A >       ran ^ AX  Ay  S •  G = G (k -k ,A.)  .      I»1' 
G (k,A) = A x §Ä    ' ~t  ~o ~t ~o ~t 
<N<0 ~ ^ 

Th. first and second tenns in the integral in (29) represent the r.f. 

electric and magnetic interactions, respectively, in the plasma.  The 

elation gives the spectrum perturbation accompanying the electric 

field represented by a(k.s)  . while (27) yields the field assoc ated 

with the perturbation in the spectrum.  In the absence of external 

oxcltatio* ^  «af.cowl.fat fields are the solution of the homo- 

Teneous integral elation formed by combining (27) and (29). with 

p « , F     The impulse response is given by the solution of the 

iihomogeieous integral e.uation obtained by combining (27). (29) and 

(21) 
'The prLar, objective of reducl.« the problem to the eolutloh of . 

„.„.l^er l»tegr.l e,u.tlo„ h.s thus been .ttelned. ». herne of 

the fln.1 lntegr8l eou.tlon 1. eseentlally the coefflolent of ^.s) 

1„ the integral In (2«; it 1« *"-* '"- the lu,,Ction 'o*^ ^  „ 
„preeentlng the eoulllbrlo» epeetru» by explicit oper.ttone epecl le« 

in (30), (31), end (29).  » !■ *™"™ ' ^^'"^ '*»"**'' 
er el.  The lntegr.l e,u,tlen osteneibly actemlnee the ,1«« fre,uency. 

m  , .. Its elgenvelue.  Since this Is sctu.lly . specified p.r.^ter 

„f the syste., however, the deterMn.tlen of the eleenv.lue effectively 

expresses the self-consistency condition, or the dispersion rel.tlon 

reLlctln. s end h  .  The fsct th.t ^  Is . reel, pos Ive 

quantlty looses restrictions on the oo«ple« fre,uenoy s  , which 

stlpnlstes the stability of the equlllbrlu« state. 
sl.rl.ln. the procedure for determlnln. the stability, dispersion 

„Ution, or «ulse response of a collection of particles the syste. 

!. first described by some Inverse phase sp.ce spectrum *„«)  , for 

each species. The force fields. Including those externally applied 
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and the internal ones which maintain the distribution, are described in 

terms of the accelerations produced and are assumed to compose a gener- 

alized harmonic oscillator, specified by the constant 6X6 matrix Y 

which validates (2).  The restrictions on these initial specifications 

are the solenoidal field condition implied by Tr Y = 0 and the equi- 
Yt 

librium condition expressed by F (0e ) = F (9) 

The vector G (9) = A X OF /öA determines the magnetic interaction 
'■s^O      "^     o ^ 

and essentially measures the anisotropy of the equilibrium velocity dis- 
Yt 

tribution.  The orbit in Inverse phase space,  (k^.A.) = (k,A)e   , may 
Yt    -1     -1 

be evaluated by standard matrix methods; the relation e = L  (s-Y) 

probably yields this most easily.  Then the perturbation of the spectrum 

is given in terms of the first-order electric field by (29), while the 

latter is given in terms of the former by (27) .  The combination forms 

an integral equation for a(k,s)  , whose eigenvalues determine the 

dispersion relation among s, k  , and the plasma frequency, m      .     The 

response to applied signals is obtained from an inhomogeneous integral 

equation, formed as in (21) for the impulse response. 

Fig. 2 depicts the processing of the given equilibrium spectrum 

and acceleration matrix required to arrive at the equations relating 

the spectrum and field perturbations. 

To account for perturbations of several species, the individual 

fields of each may be superposed to form a  .  Any small deviations 

from the harmonic oscillator equation, (2), may be treated as a further 

perturbation, as in (3). ^ 
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VI.  GAUSSIAN-MAXWELLIAW OOLUIN 

Before llustratlng the method of sotting up the Integral equation 

with an application to a particular Inhonogeneous magnetoplasma, It may 

be noted that for the homogeneous case, the Integral equation Is elim- 

inated, reducing to an algebraic relation.  This reduction Is made 

possible physically by the fact that the particles then traverse only 

regions which respond to perturbations Just as does the one In the 

Immediate vicinity of the Initial position, so that the global sensi- 

tivity Is reduced to a local Interaction. Formally, a homogeneous 

system Is described by a spectrum of the form 

Fo(e) = fo<M> = P^> <2*>3 6<*)  . (32) 

whereupon (29)   reduces  to 

^ em(e,s) = 1L     F(A ) A-a(k   s) + (KAJ-^ x a(k .s)      , 
X ~S    I «xl       's/t   -w *%*■£ -*, ..„^ g »w   xt I (33) 

where G(A) = A X ÖF/ÖA  .  The self-consistent field equation Is then 

obtained by combining this with (27), algebraically. 

A fairly realistic example of a warm, Inhomogeneous magnetoplasma 

Is provided by one described by a Gausslan-lfaxwelllan spectrum: 

Fo(9) = exp (- i 6 R 6)  . (34) 

Here,  R Is a constant, symmetric 6X6 matrix, which partitions Into 
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four 3X3 submatrlces as 

R = 
R     R 
XX      XV 

R     R 
vx    vv 

(35) 

incorporating the parameters that specify the mean spatial extent of 

the plasma, its thermal velocity, and its drift motion.  As a matter of 

interest, for ease of visualization but superfluous to the calculation, 

this spectrum corresponds to the particle distribution function 

f (0) = exp (- J 0R"1 0)/(2n)3 (det R) 
O ä 

(36) 

which represents  a collection of particles with a Gaussian spatial 

distribution and a Maxwellian velocity distribution.    The particle 

drift  is  linear in position,     u(x)   = R      R      x ~ ~      VX  XX ~ 
is uniform, specified by the mean squared thermal velocity,  T/m = v^ 

, and the temperature 
2 

vft =ö Tr(R vv R  R"
1
 R ) 

VX  XX  XV 
(37) 

These, and other velocity and spatial moments of the distribution, are 

i.jdlly obtainable by differentiation of the spectrum and evaluation at 

the origin of A- or k-space. 

The equilibrium force field acting on the plasma is assumed to be 

expressible by the constant 6X6 matrix,  Y , relating d0/dt to 0 , 

forming a generalized harmonic oscillator.  This partitions into four 
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3X3 submatrlces as 

Y = 
Y 

vx   vv 
(38) 

The submatrix Y   is to have zero trace to conserve the element of 

phase space.  It represents an acceleration linear in velocity, as is 

the case for a magnetoplasma.  Space charge fields are to be accounted 

for through Yvx  , which admits an acceleration linear in position, 

representing a particular class of ambipolar fields. 

The condition for the unperturbed distribution to be an equilibrium 

state is here expressed by 

F (eeYt) = exp (- i eeYt ReY t  9) 
O .£> 

F (9) = exp (- ^ 9 R 9)  ,(39) 

where the prime denotes the transpose of the matrix.  By inspection of 

the quadratic form, it is readily seen that the equilibrium condition 

reduces to the requirement that YR be antisymmetric. 

Specializing to a uniaxially symmetric magnetoplasma column, uniform 

in the axial direction but transversely Gaussian, reduces the 6X6 

matrices to 4 X 4, eliminates the integration over the axial wave 

number, and requires N to be redefined as the axial linear particle 

density.  A suitable combination of  R and Y matrices that satisfy 

all the conditions is specified for electrons by the 2X2 submatrlces 

2 2 
R   =aT,R  =vI,R  =R  =0; 
xx   e     vv   e     xv   vx 

vx -CD I , Y  = m  X ; X = 
e     vv   ce tl (40) 
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The last of these effects the cross product operation with the axial 

magnetic field; ^ is the electron cyclotron frequency.  There is 

thereby described a .agnetoplasma column with Gaussian radial density 

Profile of effective radius  ae  and Maxwellian velocity distribution 

with thermal velocity ve  .  Equilibrium obtains when a> - v /a 

this transit frequency corresponds to a time scale of the'order of' the 

time it would take a thermal electron to traverse the effective radius 
of the column. 

Fig. 3 presents the essential characteristics of the Gaussian- 

Maxwellian magnetoplasma column here considered. 

The configuration defined by (40) includes no particle drift but 

implies an ambipolar field providing a radially inward acceleration 

(-a>e r)  which maintains the Gaussian profile.  This field is to be 

provided by the interaction with the ion distribution.  But this radially 

increasing ambipolar field which is to make the equilibrium configuration 

a harmonic oscillator strictly requires charges at infinity, or violates 

overall neutrality.  This system is hence not strictly realisable on a 

permanent basis of macroscopic self-consistency,  it is however possible 

to maintain the desired conditions, including charge neutrality at 

least temporarily, by an appropriate selection of the ion distribution 
as follows. 

If the same number,  N , of ions per unit length be distributed 

with a Gaussian profile of effective radius ^ slightly smaller than 

ae  . then the resulting ambipolar electric field would provide an 

inward acceleration to the electrons, of magnitude 

 o 
2jrr exp (- | ^) 

a 
e 

-exp (- 1 ^) 
ai 

(41) 
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2 -X -NI ^ 

~^T- ' -'•"'"TT"    ilTio^j^: "rise fe*   eX^v^r^vji*  rvuK-?^ fys>» ?W *\X5* *x*\ 

acctxnte-i for TO firsi  crvier  \r.  ;Ä\^   t\>nt*l\!t»x  »xth s^V>   «AMM* 

mocificatic«!«.     Tbe corr^ctivMts   M«   :he  MMll«r   «Nv ■»»• Wfcttwm Mf« 

radial dis-iriburioc 4r.vi the   low»!'  the  tet^HM .*uuv> 

The  aatipolar field *hioh here  r«N*lr«Uv*  the e\es"t»\M\«   teWvV*   lift 

disrupt  the  ion distribution,  whieh JUMKV  t&\\%  i^ t\v\t\\vm ^  the 

postulated haraonic oscillator dynamic*.     The  t«iU«V  •%•%« he»v 

described  is hence only  a quasi-equt Ubru«« .«trtte V Ait   Vhe   \rt\^e   VvM\ 

to-electron mass  ratio ensures   that   the  Uwe develo|M*e»'   \>t   the \\\* 

tribution can be quite slovi- compared  to the  ttme weale of   \\w  \\i\ 

perturbations here considered.     Since oollistcm« were e\e\\(ded  nt   the 

outset,   the validity of   the  formulation extend«   In  time   lor only   M 

mean collision time.     It   follows   that   the   UoK of  permanent   •(|Vllllbl>lUM 

is no severe restriction here since  all   thiit   n«i*»d hp   lmpo«ed   I«   Mud 

the parameters  allow tho Gaussian dlstrlhutlon  to per*l»t   »«»«»enltwHv 

undistorted,   in the absence of  the  porturbatImiM,   lot' ni>«' OdlliMien 

mean free  time.     The description   IN  OXK'I   io,1  a pluwma which   IM  ell her 

cold or homogeneous;   it   is   a close  approximation olliMi-wlwe,   piov lilml 

the  inhomogeneity and tempernturo  are not  Kxlreme  HIKI  llu» maw»   i«l It«  U 

large. 
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With the understanding that the system is being observed only 

during that time interval in which it behaves as a harmonic oscillator 

in equilibrium, the analysis proceeds by specializing the general result 

to the spectrum 

F (9) = exp - | (kV + A2v2)2ff 6(k )  , 
^  j_ e     e      II (43) 

and to the orbit in inverse phase space given axially by 

(k ,A )  = (k ,A + k t)  , 
t  t n    n' 11   n   ' (44) 

corresponding to free particle motion along the magnetic field, and 

transversely by 

^fVj.'^M) 

., -1 
-I 

tu. ce 
(45) 

which involves the magnetic and ambipolar fields.  Since the velocity 

distribution is here Isotropie,  G (9) = 0 and there is no first- 

order r f. magnetic interaction. The spectrum perturbation is hence 

given in terms of the perturbing acceleration a(k,s)  bv 

p^ce.s) 

1 .2 2 
2 Ve 

2« a' 
2 is e      4'I(i5t's) '      (46> 
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where   ^(k)     Is  a Gaussian transform of    a(k)     : 

Ä'8)  "/  H exp " I (k-kJ2a2    a<i5o'k •■> j   L«-it i    ^, ,00      ej * ~o    |{ d2k (47) 

The axial homogeneity gives the axial component k  the role of a 

parameter. Note that In the fully homogeneous case,  a - »  and 

^(k) = a(k) ' 

The Integral equation for the self-consistent field a(k,s)  is 

now obtained by combining (46) with (27).  Defining the plasma frequency 

m  ln terms of the axiül density by 

2 2 2 2 2 
^p = ü3o/2irae - Ne /2'taeine

0    ' (48) 

yields  the result 

-^ + 77?? (^+ s 4) L 
~s 

1 .2 2 
2 Ve 

V^(VS) = 0.(49) 

A=0 

A more explicit form of this integral equation is derivable by use of 

the equilibrium condition, which here imposes 

ir2»2 .. A2 2  ,2 2   A
2
 2   2 2 2        2 

tae + Ve = ^ a + A v + k^v^t + 2A k v2t t e e     e   II e      II II e 
(50) 
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/ 
/ 

/ 

/ 
Substitution in (49) reduces the integral equation to 

2       - | k2v2t2 ^D 2  || V 
«(k.s) + ——E—- L e 
~ ~      2   2 2 ~s 

s + k c \ ~    e -11     5/ 
A=0 

1 /.2  ,2, 2 2 (k - k )a 
«  j_   t e 

4^(it'8) " 0  ■ ÖD 

An alternate form involving an exponential rather than a Gaussian kernel 

follows from this by defining 

^(k.s) = exp (-  | kV j a(k,s)  . (52) 

The unknown is now the convolution of the electric field with the density 

distribution and the integral equation becomes 

2     ir2«2      1 .2 2 2 *    -Ka     - — kvt 
0)..      , e      2 H  e 

&Z'a)  +      2    \  2 e     hs  e 
s + k c 

(22        o \ 
c k-v stk + s ^r I A ' 

/ 

2 
a k 'k ,2, 
e~t ~o       d (k a ) 

o e 
^•^ —^7^ = 0  • (53) 

Further insight into the properties of these integral equations 
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^. —.«■■-inn mm^mm 

may be gained by examining the explicit orbit in inverse phase space. 

Developing (45) yields for the transverse motion complementing (44), 

ltx 
= \  Z(t) + Ax 

dZ/dt ' AtjL = (-V^)dkt /dt  , (54) 

where    Z(t)     is determined by  a matrix partial fraction expansion of 
(45)   as 

^2 CO, 
L.  Z(t)   = ——-^ (s + o^X)       +     L_  (s  .      x)-l 
~S O),    +   U)„      ■     •   "l CD1   +  ÜJg    '"        "2 Jl   ■  ^2 

(55) 

or 

Z(t)   = 
^2 0) 

^~r^2exp   ltx) + ^r^ exp (^tx) • (56) 

This combines two rotations,   in opposite senses,   at rates whose difference 

is  the cyclotron frequency and whose geometric mean is the transit 
frequency: 

CU«   -  CD,    = CD 2 1        ce coj a>2 = a)e (57) 

The trigonometric forn. of   (56)   is 

m.  cos m t + cu2 cos (ü.t          ca.   sin cD0t  - m    sin m t 
Z(t)  =    —= = f i_    +    _i f 2 1_ 

CD1 +a)2 ^1 +ü32 
X     ,(58) 
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which Indicates that the kornel in (53) actually involves Bessel 
(9) 

functions.   At A = 0  , for k«k = kk cos A , 
~o    O 

2.  , a k^^k 
e~t ~o 

e exp a k'Z(t) k 
e^    ~o 

= exp a kk 
e o 

ü31 m2 
 ;  COS (a) t r 0) +   cos (a>, t - Ä) 
1 ' ^2 

a>. 

\ 

=y I„(a^kkÄ -—r^-) I_(a\k_ 7—^-)c 

1 r  w2 

i(in-n)0 i(ncu, + iitD0)t 1   ^2' 

n.m 
m e o ou. + a).  n e o o^ + OD» 

(59) 

Introducing the orbit into (53) reduces the integral equation to 

ß(k,s) = 

2 2 
2,2   -k a 
V^e    J- e 

2  ,2 2  e     is e 
s + k c 

1 .2 2^.2 
- k v t 
2 11 e 

/H(k,k ,s,t) 

a kZk 
d (k a ) 

ß(k ,s)  -2-2- 
-Cv-o'     2« 

(60) 

where 

H(k,k ,s,t) 
2  2 

(c k-v stk ) k 
~ e 'v'ii ~ 

dZ    / d2Z    dZ   2  dZy 

dt2 
+ dt -Ve Ä dt 

(61) 

is merely linear in k 
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The above analysis illustrates the method of arriving at the 

integral equation governing an inhomogeneous magnetoplasma and the forms 

which that equation can take.  The numerical analysis which remains to 

be carried out on the equation to extract the dispersion relation from 

the eigenvalues involves computation on only well-behaved kernels. 

While the final numerical processing of the equations to reveal the 

wave supporting and stability properties of the plasma here considered 

is beyond the scope of this expository work, a few general remarks on 

the character of the integral equations may be in order. 

Several distinct but equivalent forms of the final integral 

equation have been presented.  The kernel may be Gaussian, as in (51), 

or essentially exponential, as in (60), or a superposition of Bessel 

functions, as when the expansion (59) is substituted into (60).  The 

choice permitted by the commutativity of the integral operator and 

the Laplace transformation in any of these forms provides further 

latitude in the selection of the equation to be analyzed numerically. 

For example, in (60), the Laplace transformation operates on the time 

function indicated, which Involves HQ^.s.t), whose Laplace transform 

is trivially deduced from (55), modified by what is purely an exponential 

function of  t  if (59) is introduced into (60).  :tn the absence of 

the factor exp (- | kVt2)  , these exponentials would result in 

merely a shift in the frequency domain, with the Laplace transform of 

H evaluated at [s - i(n ^ + m o^)]  .  The effect of the exponential 

involving the axial wave vector k^  is to introduce a Gaussian factor 

in the transformation, leading to the familiar error function, or plasma 

dispersion function,(10) and to Landau damping. 

^ The connection to the physical system is T.ade through the factor 

(Cüp/cüg)  in (60) , which plays the role of the eigenvalue ot  the integral 

equation but effectively relates the parameters s  and k  , thereby 

expressing the dispersion relation.  The stability of the Equilibrium 

state is determined by those locations of s  in the complex plane 

which permit the eigenvalue to be real and positive. 
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The two-dimensional character of the integral equations can be 

overcome in this case by taking advantage of the symmetry of the column 

to eliminate the azimuthal integration.  By use of (59), this reduces 

the double summation to a single one, as well as leaving only a one- 

dimensional integration over the radial wave number k  , suitable for 
o 

digital computation. 

Various approxlm&clons of both a mathematical and physical nature 

may be Imposed on the equations.  The common quasistatic approximation 

may be Introduced by formally letting C-» » .  In (60), this reduces 
2   2 2 2 

H(k,ko,s,t)/(s + k c )  to (k k/k )dz/dt and considerably simplifies 

the equation. Other simplifications are effected by selecting certain 

directions of wave propagation and polarization with respect to the 

magnetic field, particularly k = 0  .  The combined case is treated 

more thoroughly in the Appendix. 

For a mildly Inhomogeneous and warm plasma, the transit frequency 

CD  is low and the effective radius a  is large.  Suitable Taylor 

expansions of the kernels then permit the determination of at least the 

first-order deviations from the homogeneous case.  It is already clear 

frcti (55-59) that to the very lowest order, the cyclotron frequency 

and its harmonics are replaced by the two frequencies ax. ,ü>0  and all 

their combination frequencies; cu0 differs from cu   by ü>,  • which 
«a ce      1 

is small for low transit frequencies.  Beyond that, approximate results 

are obtainable by noting that the Gaussian factor in (47) becomes 

sharply peaked as a -♦ <» .  A Taylor expansion of a(k )  about 
e ~ ~o 

k = k yields 
~o  ~ 

ö a 
•N* 

Y(k) = a(k) + —^ —s + . . .   , (62) 
2a  dk 

e 

When this is introduced into (51), there results a differential equation 

as an approximation to the integral equation. 

Finally, it may be surmised from a qualitative examination of the 
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integral equations with GaussJmn kernels that whereas plane wave solutions 

of the form 6(k - ks) are appropriate in the limiting infinite, 

homogeneous case, the solutions for a(k) will in the general case 

involve a spectrum of k vectors, sharply peaked about some signal 

wave vector ks  . The dispersion relation then relates the signal 

frequency to this central vector of the wave packet, which is however 

comprised of a broadened spectrum of k vectors. 
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VII.  CONCLUSIONS 

The self-consistent field problem for a cl^ss of anisotropic, 

inhomogeneous particle distributions has been reduced to that of solving 

an integral equation with a well-behaved kernel.  Tractability has been       ( 

achieved mainly by considering a class of systems forWch the equili- 

brium particle orbits can be simply described analytically.  In partic- 

ular, systems whose dynamics correspond to small deviations from 

generalized harmonic oscillation have been analyzed.  The particle 

propagator then has the form exp Yt  , making it relatively simple to 

evaluate and accumulate the perturbations along the orbit. 

The approach can evidently be generalized to other systems with 

known and simply expressed unperturbed particle orbits.  A rather 

direct generalization might be to certain time-varying systems, in which 

the propagator has the form exp ^ Y(T) dx  , provided the acceleration 

matrix Y(t)  commutes with its integral.  A more sweeping generalization 

might be made to orbit equations quadratic in the phase, rather than 

merely linear.  The orbit then satisfies a Riccati equation and the 

systems so described admit ambipolar fields more general than those 

considered herein. 

Simple particle orbits permit, simple recipes for the evolution of 

an arbitrary initial particle distribution function in response to 

arbitrary perturbations.  The relevant physical quantities are, however, 

various moments of the distribution, or other expectation values.  Their 

extraction by integration over velocity space is not only cumbersome 

but complicated by classes of particles whose orbits are in resonance 

with the propagation of disturbances.  These difficulties are avoided 

by describing the system at the outset by its spectrum in inverse phase 

space.  This spectrum is the characteristic function of the distribution, 

or the expectation value of exp 16-0 , and exhibits all the moments 

by its behavior in the immediate vicinity of the origin of inverse phase 

space. 
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The perturbation of the spectrum is expressed in terms of the 

Fourier-Laplace transform of the perturbation, which is algebraically 

related to the sources of the electromagnetic fields, which are in 

turn given directly by the porturbed spectrum. The system of equations 

is thus closed self-consistently through an integral equation whose 

kernel is essentially the unperturbed spectrum evaluated along the 

orbit in inverse phase space.  The equation admits arbitrary combinations 

of equilibrium spectra and the associated harmonic oscillator force 

fields and involves well-behaved kernels,well-suited for final numerical 

analysis 

The case of a Gaussian-Maxwellian plasma has been treated in greater 

detail, by way of illustration.  The plasma configurations conforming 

to the exp (- - 0 R 9)  spectrum have not been exhausted herein.  One 

which requires no ambipolar electric field to maintain its density 

profile is a column described transversely by 

»4-
2 

-CDX 

CüX    üXU c 

(63) 

This has a Gaussian radial profile with effective radius  a  , a 

Maxwellian velocity distribution of temperature T = m a 03(05 - CD)  , 

and an azimuthal drift corresponding to rotation at the rate Cü about 

the axis of the column.    Except for diamagnetic effects of the 

azimuthal drift current, this column is in equilibrium in an axial 

magnetic field specified by the cyclotron frequency CD  .  The foregoing 
c 

analysis applies to this configuration, with R replaced by (63), 
Y
vx = 

0 1 Yvv = ü3CX .  It may also be noted here that displacements 

through x  and drifts at velocity v  can be simply incorporated into 

the inverse phase space spectra, through a phase factor exp 16*0 
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The illustrative example presented here affords an opportunity to 

formulate integral equations for a plasma in which temperature, anisotropy, 

inhomogeneity, particle transport, and ambipolar fields are all to be 

accounted for.  There appears to be no insurmountable obstacle, other 

than increased complexity, to generalizing the formalism to include 

collisions and relativistic effects. 
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APPENDIX 

TRANSVERSE OSCILLATIONS OP MAGNETOPLASMA COLUMN 

Under the quasistatlc approximation, the special case of a self- 

consistent, azimuthally symmetric transverse field pattern, which may 

represent the cutoff condition for axial propagation along the Gaussian- 

Maxwellian magnetoplasma column, is sufficiently simple to analyze 

quite thoroughly. With reference to (52,60,61), the conditions are 

expressed by c -» « , k = 0 , a(k,s) = nh(u,s)  , where n is a unit 

vector along k and u = ka It then suffices to set A = 0 so 

that the orbit is given by k, = kZ(t)  and the integral equation reduces 

to 

-lu2 

2 
C15_ 

h(u,s) = P e 
'S  dt 

<x> 
-   ( it J 

1 2 
' 2 Uo uu nZn 

o~ ~o d2u 

o   in 
(A-l) 

Choosing polar coordinates with polar axis along n and azimuth defined 

by n = exp (AX)n  , the azimuthal integration becomes, using (56), 

/•2it 

Jo 

uu nZn 
o~ ~o 

2ff   Jo 
exp(uu 

a)1 cu2 
— cos(ä - CU-t) + — cos(0 + ü)0t) 
0^3        l Us * 

d0 

= i (un(t)u ) , 
o      o 

(A-2) 

where 

2     / 2 
0   (t)    =   (CD.    +   ZcD.CDg   COS   Cügt   + 

2\ / 2 
^2    ^3     '      ^3 = ^1 + ^ 

(A-3) 
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Consequently, the integral equation collapses to 

12 12 
■2U Z' -2Uo 

h(u,s) = \(e     /u) L (d/dt) /  e     I (uO(t)u ) h(u ,s)du  , '^S  '    •'O o       o     o     o 
(A-4) 

2,2 
where X = cb /CD  is the eigenvalue, p e 

By use of the multiplication theorem for Bessel functions/12^ it 

is possible to reduce the kernel of this equation to degenerate form. 

Since 

00 
-.2 2  ,vm 

v-o» =i i2-^eiL -X'v • 
n   2 m m=0 

the equation is equivalent to 

1 2 
2 00 

«2 2   . m „„,., = x ^^ is ^ ^ «r^zJL „m(s) ,     (A.6) 
2 m'. m=0 

where 

1 2 
« u 

Hm(s) = Jb e      Im(U> uinh<u»s>du  • (A-7) 

The degeneracy now permits the reduction of the integral equation to an 

equivalent infinite set of simultaneous equations of the form 

H (s) = xS   G (s) H (s)  , (A-8) n      ^  nm    m 
m=l 
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with 

W* ^ ^ X e U In(u)un ^ Ä (n2u2 " »"^ • <A-9) 

These matrix elements may be evaluated explicitly, by virtue of the 

relations 

k P /  a)2   \ 

^ * ^ =2 (p (-DW. TT h-1^   •      CA-10) 
P=l V / q=l \8  + «l ^3/ 

and, in terms of Laguerre polynomials. 

2 1 
Z0 ""       n + 2k - 1 4 

Thus, 

1/4 

nm     „n+m 

P /   2 
1 
e ^ "öiMöT —2k—^{pj^« cwlTl-r 

£=1 p=l ^ / q=l \s + 
2..™ _  ,UI „,, .     ^K    ^ \P/     ' r'  M \ 2  2 2 

k=l p=l   ' q=l \s + q cu3 

(A-12) 

and the resonance condition is 

det (I - \G) = 0 , a.13) 
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which relates the complex frequency s to the plasma frequency a) 
2  2 2     2 1/2 

in X = tu /ü>  .  Clearly, the harmonics of ü)0 = (cu  + 4ü) ) ' 
p' e 3    ce    e 

replace the cyclotron harmonics as the significant frequencies. 
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RESPONSE TO PERTURBATIONS 

For«*   fl«ld: 

Pro»•■•tor: 

Orbli; 

»•rtarkallMii 

••iMIOUll 

timid eondltlofi: 

Initial  atatai 

Parttaant 
frtfrtys 

Malltkrlua 
eoadlllo«! 

Orbital 
parturkatloa: 

Parturbatlon 
of  Initial atatat 

.(#,t) 

» •• ' 0 

^.-"V 
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i.   -T)"1.^.»« 

•.-•.' 

' 

' <•> 

m 
W ■ '„'»>    • 

.», 

•(a - rT' . i • 

»(*. 

I 

I 

«,(•■•> 

'■*• 

»„••.) - r.c.) 

'i** " • - dN"*« Ä 
,<!..) - >/W«.,«««-*...) —2, 

r.d.o) . r((«>«(. . r)"1 

Pig.  1 - Comparison of calculation of response to perturbations 
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EVOLUTION OF INTEGRAL EQUATION 
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Fig. 2 - Evolution of self-conslatent equations for spectrum 
and field perturbations. 
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Electron distribution and spectrum 
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Fig. 3 - The Gaussian-Maxwelllan magnetoplasma column. 

42 



. msi 

UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - UO 
(Smcuilly tlmaillleallon of «III», body ot abttnet «nd IndaMlnf mnnotmllon mutt 6. *n<wa< £m ttm uff/) r«po»( ■• clfllltJ} 

1    ORIOINATIN G ACTIV/I^Y rCoiporafa author; 

Plasma Physics Laboratory 
Stanford Electronics Laboratories 
Stanford University. Stanford. California 

Unclassified 
lb   enour 

3   RtPORT TITLE 
Jli. 

INTEGRAL EQUATIONS FOR  INHOMOGENEOUS MAGNETOPLASMA WAVES 

■;    übwCnirl ivC ^""ES (Typ* ot raport and inclusive Jaten) 

Technical  Report 
5   AUTHORfSJ CLaa» n—   ?;.-J: ...,„., minaU 

Diament, Paul 

6   REPONT DATE 

June   1967 
Sa.    CONTRACT  On   GRANT   NO. 

l)A-28-043-AMC-02041(E),   ARPA Order 
&  PNojtcTNo. No.   695 

7a    TOTAL  NO    Or   PACK* 

45 
76.   NO    OF RCFt 

12 
9a    OmOINATOR't RCRORT NWkJaiRrS; 

SU-IPR No.   174 

,',   *?.H™JorjPO"T "^^ <4»r»«f»»»nu»6af. •«fir6ao.(«nad 

10 A VA ILAPiUTV/LIMITATION NOTICES 

This document is subject to special export controls 
and each transmlttal to foreign governments or foreign nationals may be made only 
with prior approval of CG, USAEOOM, Attn;  AMSEL-KL-TG, Ft. Monmouth. N.J.  07703. 

11 SUPPLEMENTARY NOTES 12   SPONSORING MILITARY ACTIVITV 

U.S.   Army Electronics Command 
Ft.   Monmouth,   N.   J.   -  AMSEL-KL-TG 

13    ABSTRACT 

The problem of wave dispersion and stability for a class of hot, inhomogeneous 
collisionless magnetoplasmas is reduced to the solution of an integral equation 
wilh well-behaved kernel.  Admissible configurations include those for which the 
externally applied and internal ambipolar fields form a generalized harmonic 
oscillator.  The full s. t of Maxwell's equations is used to arrive at self- 
consistent perturbation fields in terms of the equilibrium particle distributions. 
An illustrative example treats a magnetoplasma column with Gaussian radial profile 
and Maxwellian velocity distribution in a state of quasi-equllibrium. 

1473 02 3 S 5 8 
mussmm 
tomlty Cläüifli ttrity ClaMifletitfon 



UNCLASSIFIED 

14. 

Security Classification 

KEY WORDS 

INHOMOGENEOUS MAGNETOPLASMA 

INTEGRAL EQUATIONS 

INVERSE PHASE  SPACE 

PLASMA THEORY 

HARMONIC OSCILLATOR 

GAUSSIAN-MAXWELLIAN COLUMN 

FOURIER-LAPLACE  TRANSFORMS 

LINK A 

ROLK 
LINK 9 

ROLI 
LINK C 

ROLK 

1.   ORIGINATING ACTIVITY:   Enter the name and address 
of the contractor, subcontractor, grantee. Department of De- 
fense activity or other organization (corporate author) isuiine 
the report. 

2a.   REPORT SECURITY CLASSIFICATION:   Enter the over 
all security classification of the report.   Indicate whether 
"Restricted Data" is included.   Marking is to be in accord- 
ance with appropriate security regulations. 
26.   GROUP:   Automatic downgrading is specified in DoD Di- 
rective 5200.10 and Armed Forces Industrial Manual.  Enter 
the group number.   Also, when applicable, show that optional 
markings have been used for Group 3 and Group 4 as author- 
ized. 

3. REPORT TITLE:   Enter the complete report title in all 
capital letters.   Titles in all cases should be unclassified. 
If a meaningful title cannot be selected without classifica- 
tion, show title classification in all capitals in parenthesis 
immediately following the title. 
4. DESCRIPTIVE NOTES:   If appropriate, enter the type cf 
report, e.g., interim, progress, summary, annual, or final. 
Give the inclusive dates when a specific reporting period is 
covered. 

5. AUTHOR(S):   Enter the naine(s) of authors) as shown on 
or in the report.   Enter last name, first name, middle initial. 
If mil tary, show rank and branch of service.   The name of 
the principal «athor is an absolute minimum requirement 
6. REPORT DATE:   Enter the date of the report as day, 
month, year; or month, year.   If more than one date appears 
on the report, use dste of publication. 
7a.   TOTAL NUMBER OF PAGES:   The total page count 
should follow normal pagination procedures, i.e., enter the 
number of pages containing information. 
76.   NUMBER OF REFERENCES:   Enter the total number of 
references cited in the report. 
8a.   CONTRACT OR GRANT NUMBER:   If appropriate, enter 
the applicable number of the contract or grant under which 
the report was written. 
86, 8c, fc 8d. PROJECT NUMBER: Enter the appropriate 
military department identification, such as project number, 
subproject number, system numbers, task number, etc. 
9a.   ORIGINATOR'S REPORT KUMBER(8):   Enter the offi- 
cial report number by which the document will be identified 
and controlled by the originating actlvltv.   This number must 
be unique to this report. 
96. OTHER REPORT NUMBER(S): If the report has been 
assigned any other report numbers (either by the originator 
or by the sponsor), also enter this number(s). 
10.   AVAILABILITY/LIMITATION NOTICES:   Enter any lim- 
itations on further dissemination of the report, other than those 

INSTRUCTIONS 

DD Ä 1473 (BACK) 

imposed by security classification, using standard statements such as: such as 

(1) 

(2) 

(3) 

"Qualified requesters may obtain copies of this 
report from DDC" 

"Foreign announcement and dissemination of this 
report by DDC is not authorized." 
"U. S. Government agencies may obtain copies of 
this report directly from DDC.   Other qualified DDC 
users shall request through 

(4)       U. S. military agencies may obtain copies of this 
report directly from DDC   Other qualified users 
shall request through 

(S)    "All distribution of this report is controlled.  Qual- 
ified DDC users shall request through 

If the report has bean furnished to the Office of Technical 
Services, Department of Commerce, for sale to th« public, indi- 
cate this fact and enter u    - 'r<e, if known. 

U. SUPPLEMENTARY NOTES: Use for additional explana- 
tory notes. 

12. SPONSORING MILITARY ACTIVITY: Enter the name of 
the departmental project office er laboratory sponsoring (pay- 
ing tor) the research and development.   Include address. 
13. ABSTRACT:   Enter an abstract giving a brief and factual 
summary of the documeat indicative of th« report, even though 
it may also appear elsewhere in the body of the technical re- 
port.   If additional space la required, a continuation sheet shall 
be attached. 

It is highly desirable that the abstract of classified reports 
be unclBt-vfied.   Each paragraph of the abstract shall end with 
an indication of the military security classification of the in- 
formation in the paragraph, represented ss <TS), (S). (C), or (U). 

There is no limitation on the length of the abstract.   How- 
ever, the suggested length is from 150 to 225 woris. 

14. KEY WORDS:   Key words are technically meaningful terms 
oi short phrases that characterize a report and may be used as 
index entries for cataloging the report.   Key wordt must be 
selected so that no security classification is required.   Identi- 
fiers, such ss equipment model designation, trade name, military 
project code name, geographic location, may be used as key 
words but will be followed by an indication of technical con- 
text.   The assignment of links, rales, and weights is optional. 

mTUMuasR 
Security Classification 


